Виж Crux Mathematicorum 6/1996, стр. 279.

2069. [1995: 235] Proposed by D.J. Smeenk, Zaltbommel, the Netherlands.

M is a variable point of side BC of $\triangle ABC$. A line through M intersects the lines AB in K and AC in L so that M is the mid-point of segment KL. Point K_1 is such that $ALKK_1$ is a parallelogram. Determine the locus of K_1 as M moves on segment BC.

II. Essentially the same solution by Tim Cross, King Edward's School, Birmigham, England; Hidetosi Fukagawa, Japan; Walther Janous, Ursulinengymnasium, Innsbruk, Austria; Mitko Christov Kunchev, Rousse, Bulgaria; Ashsih Kr. Singh, student, Kanpur, India.

Take A to be the origin and set the vectors $\overrightarrow{AB} = \overrightarrow{B}$, etc. Then $\overrightarrow{M} = t\overrightarrow{B} + (1-t)\overrightarrow{C}$, where t varies from 0 to 1 as M moves from C to B. Suppose that $\overrightarrow{K} = k\overrightarrow{B}$ and that $\overrightarrow{L} = \lambda \overrightarrow{C}$. Because M is the mid-point of KL, we have

$$\frac{k\vec{B}+\lambda\vec{C}}{2}=t\vec{B}+(1-t)\vec{C},$$

so that k = 2t and $\lambda = 2(1-t)$ (since \overrightarrow{B} and \overrightarrow{C} are linearly independent). Since $ALKK_1$ is a parallelogram, it follows that

 $\vec{K}_1 = \vec{K} - \vec{L} = t(2\vec{B}) + (1 - t)(-2\vec{C}).$

Thus the locus of K_1 is the segment joining $-2\vec{C}$ (where t = 0) to $2\vec{B}$ (where t = 1).